
LLNL-JRNL-410549

A mesoscopic network model for
permanent set in crosslinked
elastomers

T. H. Weisgraber, R. H. Gee, A. Maiti, D. S.
Clague, S. Chinn, R. S. Maxwell

February 13, 2009

Polymer



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



1

A mesoscopic network model for permanent set in crosslinked elastomers

Todd H. Weisgraber*, Richard H. Gee, Amitesh Maiti, David S. Clague†, Sarah Chinn, 

and Robert S. Maxwell

Lawrence Livermore National Laboratory, Livermore, CA 94551. Department of 

Biomedical Engineering, California Polytechnic State University, San Luis Obispo CA 

93407.

Abstract:

A mesoscopic computational model for polymer networks and composites is developed 

as a coarse-grained representation of the composite microstructure. Unlike more complex 

molecular dynamics simulations, the model only considers the effects of crosslinks on 

mechanical behavior. The elastic modulus, which depends only on the crosslink density 

and parameters in the bond potential, is consistent with rubber elasticity theory, and the 

network response satisfies the independent network hypothesis of Tobolsky. The model, 

when applied to a commercial filled silicone elastomer, quantitatively reproduces the 

experimental permanent set and stress-strain response due to changes in the crosslinked 

network from irradiation. 
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1. Introduction

Filled polymeric composites have numerous applications in science, engineering, and 

medicine due to their many advantageous properties, including thermal stability, 

chemical inertness, and biocompatibility [1, 2]. Over time, changes in the network 

microstructure due to chemical bond scission and crosslinking can alter these properties

[3, 4]. In particular, chemical aging can strongly affect the elastic properties of the 

network through modifications to the network as well as changes in the interactions 

between the polymer and filler particles. Furthermore, changes in the mechanical 

properties can depend on the strain history. For example, an elastomer that undergoes 

additional crosslinking in a state of strain can acquire a permanent set or deformation 

when the stress is removed [5, 6]. 

In many instances, polymeric materials serve as critical components, so, developing 

accurate models to predict lifetime performance in different environments is essential. To 

describe permanent set, Tobolsky first hypothesized that new crosslinks introduced in a 

state of strain are independent of the original network formed by crosslinking at zero 

strain [7]. Thus, the stress of the material is a linear combination of the contributions 

from both networks. This independent network hypothesis can be used in conjunction 

with a variety of constitutive relations from rubber elasticity theory, including the affine 

network model and more sophisticated approaches like the slip-tube model [8]. 

Comparisons of these approaches with molecular dynamics (MD) simulations have 

shown varying degrees of success in predicting permanent set [5, 9]. 

In realistic aging scenarios, elastomeric networks undergo both crosslinking and 

scission and a modification to the independent network hypothesis is required. For the 

sequential case of forming a second network by crosslinking while in a state of 

deformation, followed by scission of the original network, the concept of a stress transfer 

function was introduced [10, 11]. Physically, this function accounts for the fraction of the 

second network that reinforces the original, and the crosslink densities in the Tobolsky 

model are replaced by effective crosslink densities that incorporate the stress transfer 

function. Rottach et al. compared the fractional stress reduction after scissioning the 

original network, as computed by molecular dynamics, to predictions of the slip-tube 

model incorporating the stress transfer function [12]. Recently we demonstrated the 
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effectiveness of the Fricker stress transfer function in reproducing permanent set data 

from experiments with artificially aged filled siloxane composites [13].    

In this investigation, we propose a different approach. Since it is difficult to derive a 

theory that can predict macroscopic stresses from microstructural deformations, many of 

the predictive constitutive equations are phenomenological or empirical in nature. In an 

effort to increase the amount of coarse-graining, as compared to previous MD 

simulations, we have developed a mesoscopic numerical model that incorporates some 

details of the microstructure without resorting to computationally intensive MD 

calculations, while maintaining the functionality and predictability required for 

engineering applications. Similar physics-based models have appeared in the literature. 

Arruda and Boyce proposed an eight chain network model to reproduce the stress 

response of elastomers for several types of deformation [14]. Hanson developed a model 

for filled and unfilled polydimethylsiloxane (PDMS) by physically modeling a small 

fraction of the polymer chains in a given volume [15], where the polymer intra-chain 

forces and polymer-filler forces were based on more detailed MD simulations. In our 

numerical model presented here, only the crosslinks were explicitly described since we 

are interested in the equilibrium response prior to and during the aging process. We 

validated the predictability of the model by comparing to experimental aging data, which 

characterized the stress response, changes in the crosslink density, and permanent set of a 

filled PDMS elastomer [16].

2. Model Description

The mesoscopic network model presented here consists of sets of “bonded” nodes, 

which may represent crosslinks, entanglements, or filler particles in the material. In this 

work selected node pairs are linked by a single “bond”, which represents the entire 

PDMS chain between crosslinks in the network. Initially the connectivity is arranged on a 

simple cubic lattice with periodic boundary conditions so that each node has a 

coordination number or maximum connectivity of six. The bond interactions are 

described by a FENE spring potential, given by [17]
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where k is the spring constant and R0 is the maximum extension. To stabilize the network 

at large extensions, a standard Lennard-Jones (12-6) potential, 

12 6
1/ 6

1/ 6

( ) 4 ,   2

         0,   2

LJV r r
r r

r

 
  



           
     

 

(2)

was incorporated between bonded nodes. 

Bonds within the initial cubic lattice are randomly selected and deleted from the lattice to 

obtain the desired crosslink density, typically corresponding to a network with no more 

than a tetrafunctional junction at each node, in a manner similar to Grimson [18]. The 

ensemble of bonded nodes is then relaxed via energy minimization to obtain the initial 

structure, where the volume is adjusted to enforce an isotropic pressure constraint on the 

relaxed state. Therefore, the resulting domain is not a perfect cube but a slightly 

rectangular box. It is also possible to generate the network by randomly placing nodes 

within a cubic domain and introducing sufficient bonds between neighbors to produce the 

desired number of crosslinks. 

The deformation and response of the network model was computed with the LAMMPS 

parallel molecular dynamics code [19]. For this initial evaluation of the model we limited 

our tests to uniaxial extensions to mimic the experiments of Chinn et al. [16] We 

deformed the system in a static manner by first stretching the domain along the x-axis 

from xL to xL at a constant volume so the lateral dimensions were contracted by a 

factor of 1/ 2 , where  is the extension ratio. The system was then energy minimized to 

obtain the equilibrium node positions for the applied deformation. The stress response in 

the direction of extension is equivalent to the deviatoric part of the stress tensor, 
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2 arises 

from the constant volume constraint [5] and the second term in the parenthesis is the 

hydrostatic pressure.

In this work, we varied the parameters k and 0R in Equation (1) to fit experimental 

results and fixed 3
2b  and / 30k  , where b is the initial bond length between nodes. 

We selected a cubic lattice with 16 nodes per dimension for a total of 4,096 sites. 

Preliminary calculations revealed the stress response was independent of the node 

number for networks with eight or more nodes per dimension. Larger networks with more 

nodes are more robust at higher deformations where the bonds are stretched close to their 

maximum extension. A single extension/compression calculation could run on a single 

processor and required no more than a few seconds to complete.

3. Results and Discussion

3.1 Single-stage network model

We performed a set of parametric studies to evaluate the response of the network model 

to the adjustable parameters. Since the FENE bond potential depends linearly on k, we 

expected a linear relationship between it and the computed stress. Furthermore, we expect 

that the stress and system size, expressed as 24xL  , are inversely proportional and 

therefore computed the stress response to uniaxial stretch for a variety of networks with a 

wide range of k and xL values. In Figure 1, which shows the normalized stress for 

selected networks with a fixed crosslink density and 0 2.5R  , all the curves nicely 

collapse, confirming the linear relationship between stress and k and 1
xL  for a large 

range of uniaxial deformations.  
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Figure 1. Normalized engineering stress ( /eng xx   ) for networks with different 

values of k and xL : / 91.9xk L  kPa (blue), / 998.7xk L  kPa (green), and / 45.2xk L 

kPa (red) ( 0 2.5R  ).  The squares are the experimental values of the DC-745 response 

from Chinn et al. [16].

Networks with varying crosslink densities were created by changing the number of 

initial bonds in the lattice, as described in the previous section. Since the number of 

nodes (or crosslink sites) remains constant, this physically corresponds to changing the 

polymer density or number of chains, which is proportional to the crosslink density. 

Another way to express the crosslink density in the domain is by the ratio of the number 

of bonds to the total bonds available in the network, referred to herein as the conversion, 

p, which in the initial lattice is three times the number of nodes. Rubber elasticity theory 

predicts that stress is proportional to gelp p , where gelp is the conversion ratio at the gel 

point, since the bonds formed below the gel point do not contribute to the elastic 
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response. The gel point for this network model should be approximately equal to the 

percolation bond threshold for a simple cubic lattice, or 0.25 [20]. To test this 

assumption, we computed the stress at an extension ratio of 1.4 for networks with 

crosslink densities near the percolation threshold and defined the gel point where the 

stress had a sharp transition from near zero to non-zero values. As indicated in the inset 

of Figure 2, we estimated the gel point to be 0.29gelp  , a value slightly higher than the 

theoretically predicted cubic lattice percolation threshold.

We also tested the response for crosslink densities above the gel point, and the final 

stresses at 1.4  are plotted in Figure 2 as a function of both the relative conversion 

ratio, which is proportional to crosslink density, and 0R . For large 0R , the relationship 

between stress and crosslink density is linear, consistent with rubber elasticity theory [5]. 

However, as 0R approaches the LJ cutoff distance, the relationship becomes non-linear 

due to the finite extension effects of Equation (1), which manifested as an upswing in the 

stress-elongation response curve. 
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Figure 2. Engineering normalized stress of the network model at a strain state of 1.4 

for different relative conversion ratios, p, and maximum bond extensions. The squares 

correspond to networks with 0 10R  , and the circles correspond to networks with 

0 2.5R  . The inset figure shows the network responses as a function of absolute 

conversion ratio to determine the value of gelp . The networks were strained to 

1.4  and then relaxed.

3.2 Two-stage network model

In the strained state, crosslinks were removed and added to simulate material damage 

from radiation, where bonds were randomly selected for scissioning and the new network 

was generated by selecting node pairs within a range of 2 from one another. To 

evaluate the predictability of the model, we compared our results to experiments 

performed by Chinn et al. [16], who exposed samples of commercial, filled siloxane 
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elastomer (DC-745) under uniaxial strain to controlled dosages of radiation from a Co-

60 source. After removing the applied strain, the permanent set and stress response of the 

aged samples were measured. Nuclear magnetic resonance (NMR) and swelling 

experiments were also conducted to determine the net change in crosslink density. 

Crosslinking reactions were more prevalent than scission during the exposure to 

radiation and the change in density was independent of the stretch ratio, 1 .

From this crosslinking data, we established a linear relationship between the applied -

radiation dosage and the fraction of chain scissioning, 0/( )sci sci gel     , and new 

network crosslinks, 1 0/( )xl gel     , relative to the initial crosslink density, 0 , where 

1 is the crosslink density of the second network, and gel is the gel point crosslink 

density [13]. Thus we obtained a direct relationship between the change in the number of 

bonds in the network model and the experimental -radiation dosage.

We first considered the case when no scission occurs so the original network is 

unchanged while a new set of crosslinked bonds is introduced in the strained state. 

According to the independent network hypothesis of Tobolsky, the second network is in 

an unstrained state and therefore should have no contribution to the stress at the stretch 

ratio in which it is added. Figure 3 shows the stress prior to and after introducing the 

second set of crosslinks for various initial conversion ratios, p. The stress response at a 

new network ratio of zero corresponds to the stress of the original network. The stress 

remains largely unchanged for all the networks except for the conversion ratio of 0.41 

(the highest crosslinking investigated here). There is a slight upward trend in the stress 

with crosslinking for the two lowest density networks, whereas the higher crosslinked 

networks exhibit a decreasing trend, both most likely caused by the non-linearity of the

springs. However, these changes are small and overall, the results demonstrate the 

model’s consistency with the independent network hypothesis.
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Figure 3. Engineering stress after networks are crosslinked in a strained state ( 1.4  ) 

for different initial crosslink densities and density of second network. The stress at zero 

radiation dosage is the value prior to adding the second network and is also indicated by 

the horizontal dashed lines. Symbols correspond to initial conversion ratio, 0 gelp p : 

0.073 (circles), 0.16 (squares), 0.31 (triangles), and 0.41 (diamonds). No scission occurs 

in the data shown here.
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Incorporating scission into the model allowed direct comparisons with the experiments 

of Chinn et al [16]. We first fit the experimental data for a pristine siloxane sample 

(square points in Figure 1) to the normalized stress-strain response using a ratio of 

/ 91.9xk L  kPa, 0 2.5R  , and a relative conversion ratio, gelpp  of 0.31. It is 

apparent that the model captures the correct elastic modulus and somewhat under predicts 

the extent of the experimental upswing at the highest strain (last point). The upswing in 

the model curve is less pronounced and occurs at a larger stretch ratio of 1.5  . We 

checked the consistency of the model with the / xk L fitting parameter by independently 

estimating a spring constant and length scale. The length scale can be obtained by 

comparing the number of bonds in the model to the crosslink density of the DC-745 

sample. In our previous work [13], we estimated the elastic modulus to be 933 kPa which 

corresponds to a crosslink density of 82.24 10 m from the relationship 0~G kT . 

Based on the selected conversion ratio, the network model is then equivalent to a 31 nm 

cube of this material. The entropic spring constant of an ideal chain is given by 
23 /idealk kT R   , where 2R  is end-to-end distance of the chain. For this estimate, 

we define an effective or average network spring constant based on the mean-squared 

bond distance between crosslinks in the microstructure. From our model this distance is 

~1.8 nm and therefore the estimate for / xk L based on the properties of DC-745 and the 

physical assumptions in the network is 120 kPa. Considering the amount of coarse-

graining in this approach it is quite encouraging to find the fitted and estimated values of 

this ratio are within a factor of 1.3. 

With the model parameters set, we calculated the permanent set at radiation dosages, D, 

at deformations, 1 , corresponding to the experiments. The amount of scission and 

crosslinking was related to the radiation dosage using the previously calibrated 

relationships [13]. The model parameters describing the additional bonds in the second 

network were identical to those in the original network. After incorporating the second 

network and relaxing, the domain was gradually compressed to a state of zero stress, thus 

providing the domain recovery length, s , and the permanent set was calculated from the 

definition, 
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Figure 4 compares the permanent set predictions from the mesoscopic numerical model 

and the corresponding experimental values. Considering the simplicity of the model, the 

agreement is excellent, with the largest difference of 10% occurring at the 170 kGray 

dosage. Also note that the model correctly reproduced a decrease in permanent set with 

increasing 1 , whereas the experimental data deviated from this behavior at the higher 

radiation dosages. There may have been some experimental error measuring the 

permanent set at smaller extensions, however, despite the uncertainty, the range of 

permanent set is closely matched between the data and the model at each radiation 

dosage. 
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Figure 4. Permanent set experimental data of Chinn et al. [16] (squares) and model 

predictions (x’s) for a range of radiation dosages applied at strained states of 2.11 

(blue), 4.11  (black), and 9.11  (green). 

Finally, we further extended the networks irradiated at 170 kGray to compare the 

predicted material responses with the experimental samples. As shown in Figure 5, the 

agreement at small stretch ratios is excellent and the increasing elastic modulus with 

decreasing 1 is reproduced. At larger deformations, the network model and experiment 

deviate, most likely due to finite extensibility effects. Presumably we could improve the 

model by adjusting the maximum bond extension to better capture the upswing.  
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Figure 5. Normalized stress response of experimental siloxane composite samples of 

Chinn et al. [16] (squares) after irradiating at 170 kGray at different stretch ratios, 1 , and 

response of the mesoscopic model (lines). 

4. Conclusions

We have developed a computational mesoscopic model of polymer networks using a 

very coarse-grained approach that consolidates the segments of the polymer chains 

between crosslinks into a single bond. By ignoring the dynamics of the chains, only the 

static configuration of this heterogeneous network contributed to its material properties. 

Three free parameters, the spring constant, k, maximum bond extension, R0, and crosslink 

density or conversion ratio, p, characterized the initial network. For relatively large 
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maximum extensions, the elastic modulus varied linearly with both spring constant and 

crosslink density; hence, only two free parameters were required to describe the network.

Since there was no underlying dynamics in the network, bonds could be added and 

removed instantaneously. By first considering only crosslinking, we demonstrated the 

stress remained constant when adding the second network in a uniaxially strained state 

and therefore the model was consistent with the independent network hypothesis. Upon 

fixing the free parameters by fitting the stress response to data for a commercial filled 

siloxane, the model predicted the amount of permanent set and increase in elastic 

modulus after exposure to a radiation source. No other assumptions were needed to 

obtain remarkable agreement with the experimental data. These results also indicate that 

reducing the maximum bond extension may further improve the agreement with 

experiments at larger deformations. We plan to continue development of this model and 

will explicitly include the effect of filler particles by creating a heterogeneous bond 

structure. Comparisons with foams and other filled elastomers are also in progress.

Acknowledgement: This work performed under the auspices of the U.S. Department 

of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-

07NA27344.
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